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Summary

This report along with a video demonstration tape documents the

efforts expended in investigations conducted at Magnavox into the

development of real-time algorithm techniques which can be used in

FLIR imagery for the detection of cables in the field of view.

A combination of "semi-linear" local line detectors and "semi-

local" line discriminators were developed to optimize detection and

false alarm rejection.

Conclusions and recommendations for future efforts In this area

are discussed in Section 6.

This program was monitored by Mr. Jamie Jones of the Night Vision

& Electro Optics Laboratory, Fort Belvoir, Virginia 22060.
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1.0 INTRODUCTION

This final technical report covers the progress and efforts expended

by Magnavox Government and Industrial Electronics Company (MAGIEC) towards the

objectives of Contract DAAK70-81-C-0177 for the period of 1 October 1981 to

1 September 1982, and is submitted together with a video demonstration tape in

compliance with Contract Data requirements List Item AOO1. This contract

comprises an investigation into the real-time algorithm techniques which may be

used in FLIR imagery for the detection of cables in the field of view. The

video tape shows examples of the developed algorithm applied to video scenes

containing cables.

1.1 BACKGROUND

It has long been a problem for pilots of low flying helicopters to

detect and avoid wire obstacles such as telephone lines and power cables. Past

experience has shown that wire strikes may occur during routine day operation.

With increased emphasis on Nap-of-the-Earth (NOE) flight as a tactic to avoid

detection by threat radars and optical systems, the wire avoidance problem

becomes even more critical. In addition, NOE operations are now expanding into

periods of limited visibility and darkness through the use of IR systems such as

the Pilot's Night Vision System (PNVS) on the Advanced Attack Helicopter (AAH).

NOE flight under the best of conditions is a demanding pilot task.

NOE flight at night with a PNVS creates an environment in which the pilot must

work at near maximum capability. It is in this environment that the pilot is

easily detracted by other imagery in the scene or other flying tasks and the

ability to perceive faint wire obstacles is seriously degraded. Therefore, the

problem addressed in this contract is to determine methods which will detect

wire obstacles in the scene video of a PNVS.

Previous solutions to the wire avoidance problem have addressed the
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general case of both day/night operations and have been independent of other

on-board sensors. These solutions have required the addition of dedicated

sensors to the helicopter resulting in greatly increased weight, complexity, and

cost. In addition, the effectiveness of these sensors has been marginal. For

the AAH, however, the PNVS represents a high performance FLIR which through more

effective utilization can provide imaging of wire obstacles. The solution

investigated here is the extraction of wire obstacles from video imagery using

advanced image processing techniques. With the development of the common module

Digital Scan Converter (DSC), most of the required hardware will already be

on-board the helicopter. This approach also has the advantage of being passive

whereas the previous solutions have required active systems, thus increasing the

helicopter's vulnerability in a combat environment.

-
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2.0 THE PROBLEM

A capability for cable avoidance through passive IR image processing

techniques requires the ability to discern thin lines in the presence of

competing scene structure, fixed or moving pattern noise, and random noise,

based solely on the brightness distribution measured over the scene. This is a

difficult requirement under the best of circumstances, and necessitates an

algorithm sensitive to those characteristics in the brightness distribution

which are unique to lines.

Such an algorithm must be able to distinguish between lines and scene

clutter such as edges, points, clusters, and similar features (intensity

variations) which arise from buildings, roads, foliage, etc., found in any

terrain scene. These features can effectively hide or break up the unobtrusive

signatures of hanging wires.

An even more diffucult task is for the algorithm to distinguish

between lines resulting from hanging cables and lines due to other phenomena.

The most serious problems arise from streaking caused by detector

non-uniformities and from raster crawl caused by incompatibilities in FLIR and

TV scanning modes. However, the advent of the digital scan converter

technology, with its TV compatible output and its gain and level equalization

preprocessing will considerably reduce these problems. The algorithm should be

able to discriminate against any residual effects. Lines due to other scene

components besides cables may not be so easily dealt with, but on the other

hand, are not that severe a problem. Nevertheless, the ideal algorithm should

be able to distinguish between these lines.

Random system noise and high spatial frequency scene fluctuations due

to foliage, etc., has small line segment structure and point structure. The

line segment structure results in algorithm false alarms, while point structure
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near true lines alters the line signatures and results in algorithm failure to

detect real signals. Digitization noise, and signal aliasing effects of the

sampling process intrinsic to digitizing a scene also have a corrupting effect

on line signatures. A good algorithm must be able to operate effectively in

poor signal-to-noise ratio environments.

The problem of cable avoidance from an algorithm point of view can be

separated into two distinct tasks: (1) detecting potential line (cable) segments

in the scene in the presence of noise and clutter and (2) connecting the proper

detected line segments into extended lines further eliminating false alarms.

The first task requires a local algorithm utilizing an operator that is

sensitive to the scene intensity statistics in the neighborhood of a given scene

element, or pixel*. Its difficulty is in discriminating between a line element

and a non-line element (e.g., an edge element or point element). An overly

restrictive algorithm will discard too many real line segments and an overly

loose algorithm will keep too many clutter elements (false alarms). The second

task requires a global algorithm with the capability for remembering all

detected line segments from across the entire scene, discriminating between

potential cable segments and false alarms, and connecting the cable segments

into extended lines which are true representations of the original cables. This

algorithm may require bridging large gaps caused by interve .1ng scene objects.

There are two constraints that make the problem even more difficult.

First, the complete algorithm must operate in nearly real time, i.e., in a time

short enough to follow scene movement incurred due to vehicle or FLUR motion,

and in any case short enough to allow the pilot to take evasive action. Second,

the algorithm must be implementable in a small, light weight format

*A picture element is completely determined by its position coordinates and its
* brightness value.

i i . ,_ i : .-4-



(microprocessor, etc.) for inclusion in the on-board electronics.

Due to the limited scope of this effort it was decided to confine the

investigation to the local detection algorithm since this appears to be the

critical phase of the problem. It may be possible to allow the eye to connect

line segments that have been sufficiently enhanced to be immediately obvious to

the pilot. Furthermore, failures of the detection algorithm obviates the need

for a connection algorithm. However, some general concepts and aspects of a

connection algorithm will be discussed in terms of the future directions the

algorithm should take for a successful completion of the task.



3.0 THE CANDIDATE ALGORITHMS FOR LOCAL DETECTION

Any algorithm that detects lines must be based on some essential

characteristic or group of characteristics of a line that make it different from

other picture elements. The essential ingredient of a linear feature is that it

have continuity in one direction, but represent some deviation from the norm in

any other direction. For lines, it Is the picture intensity that is continuous

and slowly varying along the line (i.e., on and in the direction of the line),

but has an extremum in any other direction. Thus, a line has three key

qualities:

1) A direction

2) A finite extent in that direction

3) An extreme intensity value across that direction. (For real lines

of finite width the intensity gradient should be a maximum along the

perpendicular to the line's direction.) The candidate detection algorithms will

make use of some or all of these qualities.

3.1 MEDIAN FILTERING

One algorithm which makes use of a non-unique statistical feature of a

line applies the compliment of a median filter to the scene. Since the elements

of a line are greater (or less) than their off line neighbors, they will never

be the median value in their neighborhood, and in fact these line elements make

a maximum difference with the neighborhood median. Consequently, if we subtract

the neighborhood median from each pixel, we should get extrem on lines and a

washed out scene away from lines. However, while this technique can

discriminate between lines and edges, it cannot do so between lines and points

since point elements by definition are greater (or less) than their neighbors.

Because this algorithm fails to take into account the directivity and

connectedness of lines vie a vis points, it enhances points as well as lines.
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The resulting "line-enhanced" scene is much noisier than the original scene.

Although originally it was planned to pursue this technique based on our

previous observations of its line enhancing capability, it has been discarded

because of its noise enhancing side effect. Instead a search was undertaken for

a technique which makes use of three key qualities of a line mentioned above.

3.2 LOCAL DETECTOR ALGORITHM STRUCTURE

A line element has a unique relationship to its neighbors (i.e., to

other nearby line elements and to neably off-line elements) determined by those

qualities which define a line. To detect a line element we must first determine

the value of the neighboring elements or at least sample the neighborhood, and

then verify that the proper relationship exists for some choice of direction

(i.e., for some assignment of on-line and off-line elements). This is

accomplished by choosing a set of sampling templates, each member of which

assumes a different orientation of the line and assigns the identity of the

on-line samples and the off-line samples which will be tested, based on the

assumed direction. If each member sampling template is applied to a picture

element and its neighborhood, the relationship of the picture element to the

neighborhood samples will conform to the line detection criteria only when the

picture element is indeed a line element and then only when the assumed

direction is correct. The algorithm can then be structured as follows:

a. Apply the sampling template set to each element and its

neighborhood.

b. Apply detection criteria for evidence of a line for each template.

c. Compare evidence for each direction and choose direction which

gives "best" evidence for a line, if one exists.

d. If no evidence exists, or evidence is not sufficient (i.e., below

threshold) assume no detection.

-7
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3.2.1 The Sampling Template Set

The size and sampling configuration of the sampling template set are

important in determining the direction and width of a line. A 3 x 3 sampling

template set allows only four (4) different directions giving a resolution of

45. A 5 x 5 set allows for eight (8) possible directions (a resolution of

22.5*) although the sampling configuration is somewhat awkward for some

directions. Figure 3.1 is an example of a 3 x 3 neighborhood sampling template

for which the assumed line direction Is vertical. B2 is the queried pixel, Bl

and B3 are its neighboring on-line pixels, and the A's and C's are the parallel

off-line neighbors.

Al Bl Cl

IA2 B2 tC2

Figure 3.1

Both the 3 x 3 and 5 x 5 sets require that the samples be contiguous. This

means that only thin lines (approximately 1 pixel wide) will be detected. If

the samples were separated, thicker lines would also be detected. In order to

have a template set with at least 8 possible orientations (22.50 resolution) and

with a non-contiguous symmetric sampling configuration, a 9 x 9 neighborhood

need be sampled. Therefore a 9 x 9 sampling template set was chosen for this

investigation and is shown in Figure 3.2.
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3.2.2 LOCAL LINE DETECTION CRITERIA

To constitute a line detection the on-line sample elements must be

* greater (or less) than the neighboring off-line sample elements to either side.

Mathematically, this can be formulated by computing the differences of the

on-line sample elements minus the off-line sample elements (e.g., Bi-Ai, Bi-Ci)

and requiring that they all have the same sign. However, there are various ways

to formulate this criteria, each with a somewhat differing result. These

approaches can be classified as linear, semi-linear, and non-linear. They

differ only in the degree to which they employ the unique qualities of a line.

3.2.2.1 The Linear Algorithm

The linear approach requires that the average of the on-line samples

be greater (or less) than the average of all the off-line samples by some

threshold amount or no detection is encountered. If a - ZAi, b - EBi, and

c - ZCi (ref. Figure 3.2) and if E is the evidence for a line then the linear

algorithm can be simply stated mathematicaly by the following equations,

E-2b-a-c ,if JEJ >t; (3.1)

E = 0 , otherwise.

* Due to the non-uniqueness of this statistical property, this method responds to

edges and isolated points as well as to lines although its line response is much

stronger. On the other hand, because it averages over all off-line elements at

once, it tends to filter out the corruptive effect of noise on line segments.

Nevertheless it was decided to eliminate the linear algorithm immediately, based

on its inability to discriminate against edges and points.

3.2.2.2 The Non-Linear Algorithm

The non-linear algorithm requires that each on-line sample In-turn be

greater (or less) than either of its two closest off-line sampled neighbors. An

example of a non-linear line detector is,

-10-



E 2b- a - c

if Bi - Aj > t and Bi - Ci > t for all 1 (3.2)

or if Bj - Ai ( t and Bi - Ci < t for all 1;

E 0, otherwise

This algorithm discriminates against both edges and isolated points, but it has

a problem dealing with short gaps in a line caused by interfering features and

(especially) corruptive noise. While this algorithm is effective in eliminating

false alarms, it has a low detection capability for lines in the presence of

noise. The above algorithm was coded and tested along with the semi-linear

algorithm.

3.2.2.3 The Semi-Linear Algorithm

The semi-linear algorithm is a compromise between the linear and the

non-linear algorithms. While it does not average over all off-line samples,

neither does it treat each off-line sample separately. Rather, it averages

separately over the two sets of off-line samples (one set to either side of the

assumed line). That is, the semi-linear algorithm requires that the average of

the on-line samples be greater (or less) than either off-line set-average by

some threshold amount. An example of a semi-linear detection algorithm is given

by the equations,

E = 2b - a - c

if b - a > t and b - c > t

or if b -a < t and b -c < t; (3.3)

E - 0 , otherwise.

This semi-linear approach eliminates edges but is still somewhat

responsive to isolated points, although less so than the linear algorithm.

However, it is less influenced by corrupting noise near line elements. This

algorithm was also coded and evaluated in this study.

i -11- 1



3.2.2.4 A Variation

One can choose another estimate for the evidence besides the sum of

differences given in equations 3.1, 3.2, and 3.3. For example, in the linear

approach one could choose the product of the difference,

E - (b-a) - (b-c) if (b-a) > t and (b-c) > t

or if (b-a) < t and (b-c) < t; (3.4)

E = 0 , otherwise.

This variation shiould improve the discrimination between lines and edges. This

is because the product favors lines having similar off-line statistics to either

side of the line, vis a vis, lines whose off-line samples to one side of the

line are much stronger than the off-line samples to the other side of the line,

a condition which strongly resembles an edge corrupted by noise.

3.2.3 MAGNITUDE AND DIRECTION ALGORITHMS

Once the evidence for a line has been computed for each orientation of

the sampling set it then needs to be evaluated to determine which orientation

has the strongest evidence. Since the gradient is greatest when traversing

across the line perpendicularly, the evidence (differences) should be strongest

when the chosen on-line elements are most closely aligned with the actual

direction of the line. If we take as the direction of the line, the direction

associated with the sampling template which has the strongest evidence, we

should be able to evaluate the direction of the actual line to within + 11.25.

At this point we can also define some measure of the strength of the line based

on the evidence.

3.2.3.1 The Maximum Evidence Approach

The most straightforward way is to just choose the value of the

maximum evidence. If VAL is the magnitude of the line, and THETA its direction

(i.e., the angle it makes with the horizontal axis as shown in Figure 3.3), then

-12-



VAL - max [Ek] - Ek., (3.5)

where Ek is the evidence from the kth sampling template and km is the index of

the template having the maximum evidence. The angle associated with the kth

template is given by,

k  (k-1) radians (3.4)

THETA

X

Figure 3.3

VAL can be thresholded to reduce false alarms. This algorithm was tested and

evaluated in the study.

3.2.3.2 The Statistical Approach

Another more complex algorithm uses circular statistics to develop a

more accurate estimate of the direction and strength of a line. The direction

O can be obtained from the weighted mean orientation e by

X = E k cos (
2 0 k) (3.5)

Y ZE Ek sin (2 Ok) (3.6)

= (1/2) tan -1 (Y/X). (3.7)

THETA - Ok nearest to . (3.8)

The strength of the line can be derived from the variance of the weighted

distribution of directions from the mean direction. If the variance is given

by,

2 1 - (X2 + y2 )/(E Ek)2  (3.9)

then VAL 1 - 02 = (X2 + y2 )/l Ek)2  (3.10)

-13-
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VAL is now a measure of the unanimity or agreement of the statistical

directional data with the weighted mean orientation.

3.2.3.3 The Symmetry Parameter

In addition one can define a third parameter which can be used as a

figure of merit of a line. This parameter depends on the symmetry of the line

across the direction of the line, and is given by,

MU - (2b - a + c)/4 (3.11)

(SIGMA)2 = [2(b - MU)2 + (a - MU)2 + (C - MU)2 ]/4 (3.12)

KAPPA = (2b - a - c)/4 (3.13)

and SYM - KAPPA (3.14)

where O < SYM < 1.

SYM is a measure of the degree to which the off-line samples to either side of

the line have the same value. As such this parameter helps discriminate against

edge like features. Often times an edge which is corrupted by noise can meet

the statistical requirements of a line, although its symmetry (as measured by

SYM) would be low. SYM can also be thresholded to reduce false alarms. An

algorithm using THETA, VAL, and SYM to evaluate the evidence for a line was used

in this study.

-14-
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4.0 THE SEMI-LOCAL LINE DISCRIMINATOR

In order to reduce the false alarm rate without overly degrading the

detection capability, a discrimination technique is required that is independent

of the detection mechanism. The previous algorithms made use of the local

property of a line that the pixel value is an extremum on a line when traversing

across the line and that the extremum Is largest when the direction traversed is

normal to the line direction (Property 3 of section 3.0). What has not been

employed is Property 2 of section 3.0, namely, that a line has finite extent

along its direction. That is, there is some continuity along the direction of

the line in both magnitude and direction, particularly in direction since

fluctuations in background (off-axis texture, etc.) could affect the

magnitude. Therefore, a detected line segment can be expected to have on-line

neighbors which are also detected and which have the same direction. To make

this determination about a detected line segment requires extending the

neighborhood of consideration, i.e., merging neighborhoods in the direction of

the detected line segment. In this sense it is a semi-local algorithm, a

compromise between the purely local detection algorithm and the global

connection algorithm which would link locally deleted line sections into

continuous lines which extend across the scene.

The semi-local line discriminator, examines a detected line element to

see if has extent along its direction, accepting only those detected line

elements which have detected line elements at either end of its direction, or at

least its immediate neighborhood which line segments have the same or similar

direction and perhaps the same sign. (The sign of a line element will be

considered positive if the local on-line extremum is a maximum, and negative if

it Is a minimum. Having the same sign is a compromise between having the same

magnitude and requiring no magnitude correlation whatever.) To make these

I -15-



comparisons requires more memory since it becomes necessary to store the

direction and magnitude (or just sign) information of the neighboring detected

line elements for future comparisons. There are numerous variations possible in

this correlation process. Two algorithms were chosen for this study, one based

on nearest neighbors and one based on second nearest neighbors.

4.1 NEAREST-NEIGHBOR CORRELATION

The first algorithm that was used tested only nearest neighbors for a

correlation of direction and sign. For nearest neighbors there are only four

orientations where a direct extension of the detected line element leads to an

unambiguous choice of neighboring on-line elements (and their orientation).

Since there are eight possible line orientations, the algorithm used did not

require specific neighboring elements to be detected line elements of a given

orientation and sign. Instead it was required that the neighborhood contain at

least a specified number (N) of detected line elements of the same orientation

and sign. To carry out the comparison, each detected line element was assigned

a direction number between 1 and 8 and a sign, positive for a bright line and

negative for a dark line. (For example, a bright vertical line Is assigned a

value of +5 whereas a dark line at 45* is assigned a value of -3.) If N Is set

to 2 then Figure 4.1 shows sample 3 X 3 neighborhoods of detected line elements

for which the central element is considered a valid line element.

4.2 SECOND-NEAREST NEIGHBOR CORRELATION

If second nearest neighbors are used, the test is more stringent since

It requires a larger extent of the continuity of the line segment. Furthermore,

all eight possible line orientations lead to an unambiguous choice of which

second nearest neighbors should also be line segments and what their

orientations should be. An extrapolation of the central detected line element

In a 5 x 5 neighborhood should intersect two second nearest neighbors. The

-16- P
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(a) (b) (c)
line value: -1 line value: +2 line value: -3

I--m',n -2

i (d) (e) (f)

line value: -5 line value: +7 line value: +3

Figure 4.1. Some Sample 3x3 Neighborhoods Containing Valid,'
~Central Line Elements for N Equal to 2

-17-"

0 K, 0



algorithm used in this study then requires that the two intersected

second-nearest neighbors also be detected line elements with the same

orientation and sign as the central detected line element. No requirements are

specified for the other nearest neighbors. Figure 4.2 shows sample second

nearest neighbor configurations for which the central element is considered a

valid line element.

4.3 EVALUATION OF THE SEMI-LOCAL LINE DISCRIMINATOR

The algorithm using nearest neighbors was coded and tested in such a

way that one could vary N, the minimum number of nearest neighbors required to

be line elements of the same orientation and sign. This algorithm turned out to

be quite good, yielding a significant improvement in the false alarm

rejection. The best case was for N equal to 2, and this value was used in all

subsequent test. However, there was still room for more improvement.

The algorithm using second nearest neighbors was also coded and

tested. The result was a remarkable improvement in the rejection of false

alarms, even better than the algorithm using only nearest neighbors.

Since the above two semi-local line discriminators were independent,

they could effectively be joined to yield a combined algorithm that was better

than either alone. This was tried and found to be the case. In fact the

improvement over the local detector results were so dramatic that any

improvements resulting from interchanging the various local detector algorithms

was comparatively unimportant. The combined semi-local discrimination algorithm

was tried with each of the potential local line detection algorithms and found

to work approximately equally well with each. The key consideration in choosing

the local detection algorithm is therefore the computation time. Choosing the

fastest local algorithm, namely one which takes the evidence as a sum of on-line

minus off-line differences instead of a product, and one which simply chooses

6 -18-



Figure 4.2 Sample Second Nearest Neighbor Configurations Yielding a
Valid Central Line Element

• - /

(a) (b) (c)
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the maximum evidence as indicating the line direction, should yield the best

overall result. Since there is no significant difference in computation time

between the non-linear and the semi-linear local detection algorithms, the

preferred semi-linear algorithm was chosen.

The possibility of combining the local detection and semi-local

discrimination algorithms with the median filtering algorithms was considered.

This was tested by first subtracting the median filtered scene from the original

scene to give the "enhanced" scene. Then the algorithms evaluated above were

applied to this scene. The results were appreciably degraded from the results

without the median filter algorithm, due principally to the increased false

alarms caused by the point enhancing property of the median filter algorithm.

One result of the improved discrimination of the semi-local algorithm

is that the detection thresholds can be lowered substantially without a large

increase in false alarms. The reduction in optimum threshold yields a more

sensitive total algorithm. However, its sensitivity is still somewhat limited.

What improvements can be made in sensitivity in subsequent efforts is discussed

later.

I
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5.0 FORMAT OF THE SOFTWARE IMPLEMENTATION

In order to establish a framework in which to compare the variations

in the cable enhancement algorithm, it was decided to write a generalized main

routine which would access the various parts of the algorithm and their

variations on a subroutine call basis. In this way the different sub-algorithms

could be coded and tested independently within the main framework . Figure 5.1

shows a functional flow diagram which depicts the format of the coding.

Appendix I is a listing of the main routine and the subroutines used in the

final algorithm. Parts of the code use system unique utility programs which

were developed by and for the Magnavox Image Processing Facility and are

contained in the system library. These subroutines are principally I/O routines

and are not listed in the appendix. The algorithm code was written in a fortran

5 language supported by the Data General Eclipse computer.
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Figure 5.1. Logical Flow Chart for Algorithm
(As Coded Into Main Routine)
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6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

A good detection algorithm must have a high sensitivity, giving a high

detection rate, but it must also have a high rejectivity, giving a low false

alarm rate. The high sensitivity requires the ability to detect low wire

signals in the presence of high noise and clutter levels which corrupt the

signal. This means that it must in some way average out the noise and clutter

fluctuations. As can be seen from the video tape demonstration accompanying

this report, the semi-linear detection algorithm developed here has done fairly

well in this area. The high rejectivity requires the ability to discriminate

against edges and points as well as against line segments that do not constitute

extended lines. The semi-linear detector algorithm does quite well on

discriminating against edges and points, while the semi-local line discriminator

algorithm does a remarkable job on eliminating isolated line segf -s (line

shaped noise or clutter).

Yet it appears that the algorithm is ktll.' no substitute for the human

visual system. It is evident from our tests that the detectivity and rejectiv-

ity of the human eye/brain system when 'nterrogating a video scene is still

superior to the above algorithm. In fact, the human video system may be close

to the limit of performance that can be expected from the data, particularly in

real time. Consider that the human eye has an extraordinarily wide dynamic

range and a remarkable sensitivity in this range. It can detect differences in

average brightness of as little as 2% over a dynamic range of nearly 1,000

centered about the eyes adapting brightness. This, taken together with the

eye/brain ability to average over many pixels in a large neighborhood makes for

a very sensitive detector. Furthermore, recent evidence exists that most of the

cortical cells of the brain respond not to spots but to speciftcally oriented
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line segments. Add to this the brain's remarkable ability to connect local

detections in one area of a scene with local detections in another area, thereby

giving an extraordinary degree of rejection of detected line segments that do

not constitute a line (e.g., clutter), and one has an extremely efficient line

extracting system.

Nevertheless, the algorithm developed here does quite a creditable job

and it may be superior than the eye/brain system when the brain is preoccupied

with a variety of other distracting tasks associated with flying, target

acquisition and fire control, etc. The algorithm, as it stands, may be

sufficient when combined with the eye/brain system so that the cable enhanced

video gives the pilot sufficient warning to avoid most cables.

On the other hand, there is still considerable room for improvement,

and there are two areas in which this improvement could be accomplished. These

are:

a. Enlarge the local neighborhood sampling to improve the noise

filtering effects of the averaging. This area certainly would

increase the computation time, but should also result in a more

sensitive detection mechanism.

b. Develop a global connection algorithm which would eliminate the

residual clutter noise of the semi-local line discriminator.

Again this would increase computation time but it would give a

degree of rejection equivalent to the eye. It may be possible

here to include additional features for discrimination such as the

constraints of hanging cables. This could lead to an algorithm

which discriminates against lines that are not caused by hanging

wires. Remembering that every increase in discrimination ability

allows a further reduction in the optimum detection
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thresholds, we see that this global line connection algorithm

would lead to increased sensitivity of the overall system.

As noted, these improvements do not come free. They will require

increased memory capacity and increased computation time. The current version

of the algorithm, when efficiently coded and implemented in hardware should be

able to operate in real time. Only a thorough investigation will determine the

degree to which these algorithms can be improved within the real-time and light

weight constraints established by the mission requirements.

6.2 RECOMMENDATIONS

6.2.1 HAGIEC feels that while the results of the algorithms developed here

are very encouraging and may be useful as they stand, it is premature to enter a

hardware implementation program at this point. MAGIEC recommends that the

hardware development effort be scheduled to commence at the end of a second

phase of software development. We feel that significant improvement in

performance and utility may be gained with an aggressive software improvement

program. The level of effort expended to date simply was not sufficient to

develop such a complex algorithm as may be necessary to approach the performance

of the human visual system. This software improvement program should be aimed

at those areas indicated above, namely:

a. Enlarging the neighborhood sampling of the detection algorithm to

increase sensitivity.

b. Develop a global connection algorithm to discard line-like

clutter.

We believe these objectives are realizable, but they are sizeable and

will require a substantial level of effort to obtain them.

Once a global connection algorithm has been developed, it may be

possible in the future to develop an alarm system which can make decisions,

alert the pilot to potential danger, and recommend an evasive course.
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APPENDIX 1



C:****THIS IS THE MAIN ROUTINE USING SAMSET1.L1N0P2.LINTES4,THRELSk
DIMENSION NAhE(5S).JJO( 9 0:255 )ME'( 5). INAME( 5)
COMMON/RED/JiLKLINEJO(0:255)JIO(4096)
COMMON/RIT/NiILK,.LIN.KD( 0:255),IJN4 4096)
COMMON/ANGLE/KA( 0: 255)
COMMON/WINDOW/JY( 9 9 ).JA(3 >.J?( 3).JC( 3)
COMMON/LINE/JYALCE)

L I.NE= 0
IN=O-

DO 8 1=0,255
6 K((1)=KA(I)=0

TYPEOENTER READ' FILENAME"
REAE'( 11?. 100)NM

100 FORMAT(5A2)
OjPEN 2.NAME.ATT=C ,REC=128
OPEN 3P'TEMP..DC' .ATT="C' .REC=256 *
['O 9 1=0,O3

9 CALL BRITI:
TYPE*ENTER THRESHOLD LINE STRENGTH
READ FREE( 11 )ITHRES

* L WRITE( 10.50)ITHFIES
* 50 FORMAT( STREtJGTH= 15)

C**fl(READ FIRST LIGHT ROWS****
DO0 1 J=2".9

* CALL REAI
DO 1 JJ=0.255

1 JJO( JJJ )=JO(JJ)r
C**E'0G THE WHOLE PICTURE*I****

DO 2 KROW=4.251
*Cr***STORE NINE ROWS FOR THE SAMPLING MATRIX***Q

IDO 3 K1.8S
DO 3 J=0255

3 J JO ( K .J)=J JO( K I.vJ)
CALL REALI
DO 4 J=0.255

4 JJO(9.J>=JO(J)
C****COMPUTE OPERATOR FOR THIS ROW*******

DO0 5 J=4,251
C****COMPUTE OPERATOR FOR THIS PIXEL****v

DtO 6 K=1,9
DG 6 L=1.9

76 J9(K.rL )=JJO( K.J+L-5)

'DO 7 I=1..8



CALL SAMSET1( I)
7 CALL LINOF2( JVAL( I)

CALL LINTESI(LINVAL.IVAL)
IF(IABS(LINVAL).GT..0)CALL THRES1(ITHRES.LINVAL.IVAL)
KA( J)=IVAL

5 KO(J)=LINVAL
CALL DIRECT(KROW)

2 CONTINUE
DO 10 1=251.255

10 CALL E'RITE
CALL RESET
TYPE '<7>

NELK=O
LINE=O
LIN=O
OPEN 2.'TEMP .DC',ATT='C0.REC=256
OPEN 3, NAMErATT='CREC=128
DO 11 I=0.255

CALL READ2
CALL BREAD
DO 12 J=6.249
IFtJO(J)) 14,15,16

14 KO(J)=0
15 GO TO 12

*12 CONTINUE
CALL QANTl(I,1,KO)

11 CONTINUE
CALL RESET
TYPE m<7>
END'



cUBROUTINE SAMSETI( N)
C***9X9 SAMPLING CONFIGURATION.EIGHT ORIENVAFI ONS.

COMMON/WIN'OW/J9( 9.9 ),JA( 3 )JEC( 3 )JC( 3)
JB( 2 )=J9( 5,5 )
GO TO (lO.20.30,40,5O.60.70,80) N

*10 J( 1 )=J9(59.3
* JB(3).J9(5.7)

JA( 1 )=J9( 3,3)
JA(2 )=J9( 3.5)
JA( 3)=J9( 3.7)
JC( 1)=J9( 7,3)
JC( 2 )-J9( 7,5)
JCC3 )=J9( 7.7)
GO TO 90

2JB(1)=J9(6.3)
20JB( 3)=J9( 4,7)
JP( 1)=J9( 4,2)
JA(2)=J9(3,4)
JA(3)=J9(2,6)
JC(1)=J9(8v4)
JC(2 )=J9( 7.6)
JC( 3 )J9( 6r8)
GO TO 90

*30 JB( I)=J9(7,3)
JB(3 )J9( 3,p7)
JA( I )=J9(5,1)
JA(2)=J9( 3,3)
JA( 3)=J9( 1,5)
JC( 1 )=J9( 9 ,5 )
JC( 2)=J9( 7,7)
JC(3 )J9( 5,9)
GO TO 90

40 JB( I)=J9( 7,4)
JB( 3)=J9( 3,6)
JA( 1)=J9C 6,2)
JA( 2)=J9( 4,3)
JA(3 )=J9( 2,4)
JC( 1)=J9( 8,6)
JC(2 )J9( 6,7)
JCC3)=J9(4p8)
00 TO90

50 JB( I)=J9(7,5)
* JB(3)=J9( 3,5)

JA(1)=J9(7,3)
JA(2 )iJ9( 5,3)



JA( 3 )=J9( 3.3 )
",JC( 1 )=J9( 7.7 )
JC( 2 )=J9( 5,7)
JC(3 )=J9( 3.7)
GO TO 90

60 JB(1)=J9( 7.6)
JB( )=J9e ,,4 )
JA( 1 )=J9( 8.4 )

-(2 )=J9( 6.3 )
'A, 3)=J9( 4.2)

JC( I )=-j9,r', 6.E )

JC(2 )=J9( 4.7)
JC( 3 )=J9( 2.6)
GO TO 90

70 JI( 1 )=J9( 7.7)
JB(3 )=J9(3.3)
JA( 1. )=J9( 9,5)
JA(2 )=J9( 7.3 )
JA'( 3 ):,J9( 5.1 )
JC( 1. )=J9( 5.9 )
JC( 2 )=J9( 3.7)
JC(3 )=J9( 1.5)
GO TO 90

80 JB( 1. )=J9( 6.7)
JB( 3 )=J9( 4.3)
JA( I )=J9( 4.8 )
JA( 2 )=J?( 3.6)
JA( 3 )=J9( 2.4)
JC( 1 )=J9( 8.6 )
JC(2 )=J9( 7.4 )
JC(3)=J9(6.2)

90 RETURN
END

-a
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SUBROUTINE LINOF2( JYAL)
C***THIS DEFINES THE LINE CHARACTERISTIC AND/OR OPERATOR TO BE USED

COMMON/WINDOW/J9( 9,9),JA( 3),JB( 3 )JC( 3)
JASUM=JA( 1)+JA( 2 )+JA( 3)
JBSUM=JBt( 1 )+JB( 2 )+JB(3)
JCSUM=JC( I )+JC( 2)+JC( 3)
JVAL=O
JE4A=JBSUM-JASUM
JBC=JBSUM-JCSUM
IF(ISIGN( 1,JBA).EQ.ISIGN( 1.JE'C))JVAL=JBA+JBC
RETURN
END

-or



7.

SUBROUTINE LINTESI( LINVAL .IVAL)
C***THIS COMPARES ORIENTATIONS AND' CHOOSES THAT WHICH HAS MAXIMUM EVIDENCE

COMMON/LINE/JVAL( 8)
IVAL=0
LINVAL=0

* IDO 10 118
JV=IA4S( JVAL( I))
IF( JV.GT.LINVA~L )IVAL=I

10 IF(JV.GT.LINVAL)LINVAL=JV
LIVAL=SIGN( IVAL).IVL
IVALJVALG( IVAL)LNVL
RETURN

END

j



SUBROUTINE THRESI( ITHRES..LINVAL RIVAL)
IF( IABS( LINVAL ).LT.ITHRES )IVAL=O

* . IF( IABS( LINVAL ).LT.ITHRES )LINVAL=O
RETURN
END



SUBROUTINE DIRECT( KROW)
COMMON/RIT/NBLKLIN.KO( O:255).IJQ( 4096)
COMMON/ANGLE/KA(0Ot255)
COMMON/VALUE/KVAL( 5,0:255 ),KANG( 5.0:255)
IF(KROW.LE..7)GO TO 4
tDO 1 J=0,255
DO 2 K=1,.4
KANG( K .J)=KANG( K+1, J

2 KVAL(K..J)=KVAL(K+1.J)
KANG(5,J )=KA( J)

1 KVAL(5.J)=KO(J)
tDO 3 J=6.249
KO(J)=KVAL( 3.J)
IF(KO(J).EQ.0)GO TO 3
CALL CLUST(J..JFLAG.NL)
IF( NL. LE.2 )KO( J)=0
IF(JFLAG.NE.2 )KO( J)=0

3 CONTINUE
DO 9 J=0.5

9 KO(J)0O
DO 10 J=250.255

10 K0( J)=0
GO TO 6

4 DO 5 J=0.255
KANG( KROW-2..J )KA( J)
KVAL( KROW-2vJ )=KO( J)

5 KA(J)=KO(J)=0
6 IF(KROW.GT.5)CALL BRITE

IF(KROW.LT.251)GO TO 7
DO 8 J=0,255

*8 KO(J)=0
CALL BRITE

*7 RETURN
ENE,



SUBROUTINE CLUST( J.JFLAG.NL)

COMMON/VALUE/KVAL( 5,0:255 ),KANG( 5.0:255)I
NL=O
K=IABS( KANG( 3.J)
GO TO (10., 20, 30, 40, 50. 60, 709,80) K

10 KAF=KANG( 3.J+2 )
KAM=KANG( 3. J-2 )
GO TO 90

20 KAP=KANG( 2. J+2)
KAM=KANG( 4.J-2)
Go TO 90

30 KAF=KANG( 1,J+2)
KAM=KANG( 5,J-2)
GO TO 90

*40 KAFKANG( 1. J+1 )
KAM=KANG(.J-1 )
GO TO 90

*50 KAP=KANG( 1.J)
KAMKANG(5,J)
GO TO 90

60 KAP=KANG( 1. J-1 )
KAM=KANG(5.J+l )
GO TO 90

70 KAF'=KANG(1,J-2)
KAM=KANG(5.J+2)
GO TO 90

80 KAP=KANG( 2. J-2)
KAM=KANG( 4.J+2)

90 IF(KAP.EG.KANG(3,J)) JFLAG=JFLAG+.
IF(KAM.EQ.KANG(3,J)) JFLAG=JF'LAG+l
t'O I K=-1.1
DO 1 L=-lpl

d1 IF(KANG(3+KJ+L).EQ.KANG(3,J))NL=NL+1
RETURN
END
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